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Abstract

In this paper, we dealt with the problems concerning the singularities in the vicinity of a notch tip, or a crack tip as its

special case, formed from several anisotropic plates subjected to bending and shearing forces. Attention was focused on

the near-tip asymptotic analysis in monoclinic materials, which can be considered as the most general anisotropy in

plate structures. The Reissner assumptions of the plate theory were adopted. First, the fundamental equations for a

monoclinic plate were established in the cylindrical coordinate system by means of the Hellinger–Reissner variational

principle. Second, by introducing the suitable dual variable vectors, the governing equations were established in the

frame of the Hamiltonian system. These governing equations are particularly efficient to deal with multi-material

problems because all variables used are continuous across the interfaces. Third, a simple but highly accurate numerical

algorithm was proposed to resolve the governing equations. Finally, several numerical examples have been given in

order to test the efficiency and the simplicity of the present theory in studying the asymptotic fields in the vicinity of a

notch tip formed from several anisotropic plates.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stress concentration in thin plates with cracks has been a subject of numerous researches for several

decades due to its importance in analysis of thin-wall structures such as aircraft fuselages. The principal

theories studying the asymptotic fields near a crack tip in a plate loaded by bending forces were established

in the 1960s of the precedent century (Williams, 1961; Sih et al., 1962; Knowels and Wang, 1960; Hartranft

and Sih, 1968, etc.). More detailed analyses have been added into these theories later (Delale and Erdogan,

1979; Murthy et al., 1981; Boduroglu and Erdogan, 1983; Sosa and Eischen, 1986; Hui and Zehnder, 1993;

Young and Sun, 1993; Su and Leung, 2001, etc.). In these analyses, two plate theories, the Poisson–Kir-

chhoff theory and the Mindlin–Reissner theory were essentially followed. The Poisson–Kirchhoff theory
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provides rather simple mathematical solutions, but gives some physically incorrect behaviors about the

near-tip fields. In fact, according to this theory, for cracks in homogeneous elastic plates, the transverse

shear stresses vary asymptotically as r�3=2 instead of r�1=2 as r tends to zero. On the other hand, Reissner’s

thin plate theory gives physically more reasonable results, but the solution of the six-order differential
equations remains difficult for many problems posed.

The next studies were carried out in determining the near-tip fields of a crack lying along or normally

touching the interface of a bimaterial plate. Sih and Rice (1964) have applied the Poisson–Kirchhoff theory

and solved the bimaterial plate problem with an interface crack. The Riemann–Hilbert formulation was

later given by Sih (1962). The Kirchhoff theory has also been used to solve the bimaterial plate problem

with a crack normally touching the interface (Sih and Chen, 1981).

Anisotropy is a very important property in composite plates. The crack-tip fields in anisotropic plates

have been first studied by Ang and Williams (1961), who presented a closed form solution for an ortho-
tropic, infinite plate having a finite crack within the context of the Kirchhoff theory. Using the similar

concept, Sih and Chen (1981) further extended to an anisotropic plate using the Lekhnitskii formalism.

Recently, Yuan and Yang (2000) studied the same problem by applying the Reissner plate theory and the

Stroh formalism.

It is obvious that problems with cracks or notches in anisotropic plates have not been thoroughly studied

yet, especially when the cracks or notches are formed from two or more anisotropic plates. In fact, these

configurations can be found in many engineering structures such like the welded structures, composites and

so on. In this paper, we propose to find out asymptotic fields near a notch tip formed by several monoclinic
thin plates subjected to bending and transverse shearing forces. This is a more general situation in this kind

of structures. The corresponding crack problems or bimaterial problems can be treated as its special cases.

The existing traditional theories dealing with the anisotropic materials are quite fastidious in solving the

posed problem. In this work, we will use a new methodology proposed by Zhong (1995) which consists in

introducing Hamiltonian system, which is usually studied in rational mechanics, into continuum mechanics.

By choosing appropriate dual variables in the state space, we have established the governing equations on

the basis of the Reissner plate theory. We also proposed a simple but highly accurate numerical method to

solve the governing equations. Finally, we selected a few examples, some of them have been solved in the
literature, and others not yet. These examples were solved by means of the present method in order to test

its accuracy and its potential possibilities for further applications.

2. Governing equations of the problem

Let us consider a monoclinic plate subjected to bending. In fact, the general anisotropy is rather rare in

plate-based structures. The composite plates use to present at least one symmetrical plane parallel to the
mid-plane, this leads to a monoclinic system in the most general case.

Let us attach to a plate a cylindrical coordinate system ðr; h; zÞ and a Cartesian coordinate system

(x ¼ r cos h, y ¼ r sin h; zÞ. The r–h or x–y plane corresponds to the mid-plane of the plate. We first write the

stress components in the Cartesian coordinate system and in the cylindrical coordinate system as

rxyz ¼ f rx ry rz rxy rxz ryz gT and rrhz ¼ frr rh rz rrh rrz rhz gT respectively. The corre-

sponding strain components are exyz ¼ f ex ey ez cxy cxz cyz gT and erhz ¼ f er eh ez crh crz chz g
T

respectively. One can write the strain–stress relationship for an elastic monoclinic material in the Cartesian

coordinate system, as follows:

exyz ¼ Sxyzrxyz ð1Þ

Sxyz is the compliance matrix of the material, namely:
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Sxyz ¼

s11 s12 s13 s14 0 0

s21 s22 s23 s24 0 0
s31 s32 s33 s34 0 0

s41 s42 s44 s44 0 0

0 0 0 0 s55 s56
0 0 0 0 s65 s66

26666664

37777775 ð2Þ

sijði; j ¼ 1; 6Þ are the elastic compliances. In the cylindrical system, the stress and strain components can be

obtained from their corresponding quantities in the Cartesian system with a coordinate rotation, namely:

rrhz ¼ Trrxyz erhz ¼ Teexyz ð3Þ

Therefore, the stress–strain relationship in the cylindrical system is:

erhz ¼ Srhzrrhz

with

Srhz ¼ TeSxyzT
�1
r ð4Þ

where

Tr ¼

cos2 h sin2 h 0 2 cos h sin h 0 0

sin2 h cos2 h 0 �2 cos h sin h 0 0

0 0 1 0 0 0

� cos h sin h cos h sin h 0 cos2 h � sin2 h 0 0

0 0 0 0 cos h sin h

0 0 0 0 � sin h cos h

2666666664

3777777775

Te ¼

cos2 h sin2 h 0 cos h sin h 0 0

sin2 h cos2 h 0 � cos h sin h 0 0

0 0 1 0 0 0

�2 cos h sin h 2 cos h sin h 0 cos2 h � sin2 h 0 0

0 0 0 0 cos h sin h

0 0 0 0 � sin h cos h

2666666664

3777777775
ð5Þ

Eq. (4) shows that in the cylindrical system, the compliance matrix is not a constant matrix but function of

h. Nevertheless, the compliance matrix Srhz keeps always the same mathematical structure as Sxyz, i.e.,

Srhz ¼
S44 0

0 S22

� �
, where S44 is a 4� 4 symmetrical matrix and S22 is a 2� 2 symmetrical matrix. Here-

after we work exclusively in the cylindrical system, therefore the subscript rhz will be omitted in order to
simplify the notations.

In the cylindrical coordinate system, the conventional notations are used in this paper to describe the

mechanical quantities in a plate, see Fig. 1:

Displacement components : ur uh wf g;
Rotation components : ~uur ~uuh

	 

;

Bending moments : Mrr Mhh Mrhf g;
Shear forces : Qrz Qhzf g:

The main assumptions of the Mindlin–Reissner theory state that the in-plane displacements ur and uh

vary linearly through the thickness and that the displacement w is independent of z, i.e.,
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ur ¼ z~uurðr; hÞ uh ¼ z~uuhðr; hÞ w ¼ wðr; hÞ ð6Þ

where ~uur and ~uuh are functions independent of the z-coordinate.

The boundary conditions on the both sides of the plate are prescribed as follows:

rzz ¼ �q rrz ¼ rhz ¼ 0 on z ¼ h=2

rzz ¼ 0 rrz ¼ rhz ¼ 0 on z ¼ �h=2
ð7Þ

where q is the normal pressure applied on the plate surface and h is the thickness of the plate.

According to the plate theory, we assume the following relationships between the stress components and

the internal force components:

rrr ¼
12z
h3

Mrr rhh ¼
12z
h3

Mhh rrh ¼
12z
h3

Mrh

rrz ¼
3

2h
1

�
� 4z2

h2

�
Qrz rhz ¼

3

2h
1

�
� 4z2

h2

�
Qhz rzz ¼ �q

3

4
2
z
h

�
� 8

3

z3

h3
þ 2

3

� ð8Þ

In order to solve the problem more easily, we perform the following variable changes:

r ¼ en

Mrr ¼
eMMrr

r
Mhh ¼

eMMhh

r
Mrh ¼

eMMrh

r
w ¼ r ~ww

ð9Þ

The functional of the Hellinger–Reissner principle is defined as follows:

d
Z
V

rTETðrÞu
�8<: � f Tu� U 
ðrÞ

�
dV �

Z
Sr

ðXT
n � X

T

n ÞudS �
Z

Su

XT
n udS

9=; ¼ 0 ð10Þ

where V is the volume of the plate; f is the body force vector, f¼ 0 is considered in this work; EðrÞ is a
differential operator, e ¼ ETðrÞu; U 
 is referred to as the complementary energy density; u ¼ u on Su and
Xn ¼ Xn on Sr are the prescribed boundary conditions. By substituting (6) and (8) into (10), and by taking

the variable changes (9) into account, we can rewrite the Hellinger–Reissner principle (10) as follows:

Fig. 1. Internal forces and displacement components.
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d
Z
Sm

6

h3
s11 eMM 2

rr

���
þ s22 eMM 2

hh þ s44 eMM 2
rh

�
þ 2 s12 eMMrr

eMMhh þ s14 eMMrr
eMMrh þ s24 eMMhh

eMMrh

� �
� en h

2q
5

s13 eMMrr þ s23 eMMhh þ s36 eMMrh

� �
þ e2n

13h
70

s33q2 þ
e2n

hk

�
s55Q2

rz:þ s66Q2
hz þ 2s56QrzQhz

�
þ o eMMrr

on

 
þ o eMMrh

oh
� eMMhh � e2nQrz

!
~uur þ

o eMMrh

on

 
þ o eMMhh

oh
þ eMMrh � e2nQhz

!
~uuh

þ oQrz

on

�
þ oQhz

oh
þ Qrz þ enq

�
w
�
dndh �

Z
terms on boundariesð ÞdS

�
¼ 0 ð11Þ

with Sm being the mid-plane of the plate. Perform now the variations with respect to eMMij, Qi and ~uui. After
some mathematical deductions, we can find the following fundamental equations:

Equilibrium equations:

o eMMrr

on
þ o eMMrh

oh
� eMMhh ¼ e2nQrz

o eMMrh

on
þ o eMMhh

oh
þ eMMrh ¼ e2nQhz

oQrz

on
þ oQhz

oh
þ Qrz ¼ �enq

ð12Þ

Relationships between the displacements and internal force components:

o~uur

on

~uur þ
o~uuh

oh
o~uuh

on
� ~uuh þ

o~uur

oh

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼ 12

h3

s11 s12 s14
s21 s22 s24
s41 s42 s44

264
375 eMMrreMMhheMMrh

8><>:
9>=>;� enq

hk

s13
s23
s34

8><>:
9>=>;

~uur þ ~wwþ o~ww
on

~uuh þ
o~ww
oh

8>><>>:
9>>=>>; ¼ 1

hk

s55 s56
s65 s66

� �
Qrz

Qhz

� �
ð13Þ

In the case of the isotropic plate, the material coefficients sij are constants: s11 ¼ s22 ¼ s33 ¼ 1=E;
s12 ¼ s23 ¼ s13 ¼ m=E; s44 ¼ s55 ¼ s66 ¼ 2ð1þ mÞ=E and s14 ¼ s24 ¼ s34 ¼ 0. In this case, the equilibrium

equations remain identical to (12), while the relationships between the displacements and internal force
components become:

o~uur

on

~uur þ
o~uuh

oh
o~uuh

on
� ~uuh þ

o~uur

oh

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼ 12

Eh3

1 �m 0

�m 1 0

0 0 2ð1þ mÞ

264
375 eMMrreMMhheMMrh

8><>:
9>=>;� enq

Ehk

�m

�m

0

8><>:
9>=>;

~uur þ ~wwþ o~ww
on

~uuh þ
o~ww
oh

8>><>>:
9>>=>>; ¼ 2ð1þ mÞ

Ehk

Qrz

Qhz

� �
ð14Þ
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In order to establish the governing equations, we first eliminate the quantities eMMrr and Qrz from the

fundamental equations. From the first and the forth equations of (13), we can write:

eMMrr ¼
1

s11

h3

12

our

on

�
þ en h

2q
10

s13

�
� 1

s11
s12 eMMhh

�
þ s14 eMMrh

�
Qrz ¼

hk
s55

~uur

 
þ ~wwþ o~ww

on

!
� s56

s55
Qhz

ð15Þ

By substituting (15) into Eqs. (12) and (13) then by denoting ð�Þ ¼ o=oh, we obtain:

_~uu~uur ¼
s41
s11

o~uur

on
þ 1

�
� o

on

�
~uuh þ

12

h3
s44

�
� s214

s11

� eMMrh þ
12

h3
s42

�
� s41s12

s11

� eMMhh �
enq
hk

s34

�
� s41s13

s11

�
_~uu~uuh ¼

s12
s11

o

on

�
� 1

�
~uur þ

12

h3
s24

�
� s21s14

s11

� eMMrh þ
12

h3
s22

�
� s212

s11

� eMMrh �
enq
hk

s23

�
� s21s13

s11

�
_~ww~ww ¼ s65

s55
~uur � ~uuh þ

s65
s55

1

�
þ o

on

�
~wwþ 1

hk
s66

�
� s256

s55

�
Qhz

_eMMeMMrh ¼ � h3

12s11

o2~uur

on2
þ s14

s11

o eMMrh

on
þ 1

�
þ s12

s11

o

on

� eMMhh � en h
2q
10

s13
s11

þ e2n
hk
s55

~uur

 
þ ~wwþ o~ww

on

!
� e2n

s56
s55

Qhz

_eMMeMM hh ¼ � 1

�
þ o

on

� eMMrh þ e2nQhz

_QQhz ¼ � 1

�
þ o

on

�
hk
s55

~uur

 "
þ ~wwþ o~ww

on

!
� s56

s55
Qhz

#
� enq ð16Þ

We define the following duals variables:

q1 ¼ ~uur ~uuh

	 
T
p1 ¼ eMMrh

eMMhh

	 
T
q2 ¼ ~ww p2 ¼ Qhz

ð17Þ

and

v1 ¼ qT1 pT1
	 
T

v2 ¼ qT2 pT2
	 
T ð18Þ

Therefore, (16) can be rewritten as follows:

_vv1 ¼ Av1 þ enf 1 þ e2nDv1 þ e2nEv2

_vv2 ¼ Bv1 þ Cv2 þ enf 2
ð19Þ

with

A ¼

s41
s11

o

on
1� o

on
12

h3
s44 �

s214
s11

� �
12

h3
s42 �

s41s12
s11

� �
s12
s11

o

on
� 1 0

12

h3
s24 �

s21s14
s11

� �
12

h3
s22 �

s212
s11

� �
� h3

12s11

o2

on2
0

s14
s11

o

on
s12
s11

o

on
þ 1

0 0 �1� o

on
0

26666666666664

37777777777775
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C ¼

s65
s55

o

on
þ 1

� �
1

hk
s66 �

s256
s55

� �
� hk

s55
1þ o

on

� �2 s56
s55

o

on
þ 1

� �
26664

37775 B ¼

s65
s55

�1 0 0

� hk
s55

1þ o

on

� �
0 0 0

2664
3775

D ¼ hk
s55

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

26664
37775 E ¼

0 0

0 0
hk
s55

1þ o

on

� �
� s65

s55
0 1

2666664

3777775 f 1 ¼ q

1

hk
s41s13
s11

� s43

� �
1

hk
s21s13
s11

� s23

� �
� h2

10

s13
s11

0

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
f 2 ¼ q

0

�1

� �
ð20Þ

In the isotropic case, the governing differential equations are always written as (19) but with the following

matrices:

A ¼

0 1� o

on
24ð1þ mÞ

Eh3
0

�1� m
o

on
0 0

12ð1� m2Þ
Eh3

�Eh3

12

o2

on2
0 0 1� m

o

on

0 0 �1� o

on
0

26666666666664

37777777777775
C ¼

0
2ð1þ mÞ

Ehk

� Ehk
2ð1þ mÞ 1þ o

on

� �2

0

2664
3775

B ¼
0 �1 0 0

� Ehk
2ð1þ mÞ 1þ o

on

� �
0 0 0

24 35 D ¼ Ehk
2ð1þ mÞ

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

26664
37775

E ¼

0 0

0 0
Ehk

2ð1þ mÞ 1þ o

on

� �
0

0 1

2666664

3777775 f 1 ¼ q

0
mð1þ mÞ

Ehk
mh2

10
0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
f 2 ¼ q

0

�1

� �
ð21Þ

Let us now consider a notch formed from several elastic anisotropic materials (Fig. 2). The notch tip is

taken as the origin of the cylindrical coordinate system and the notch front as the z-axis. The plate 1

occupies the sectorial domain [h1, h2], named zone 1; the plate 2 occupies the zone 2, bounded by [h1; h2],

and so on. Referring to Fig. 2, we adopt the superscript (i) to indicate the quantities in the zone i, for

example, vðiÞ, AðiÞ etc. In each zone, the governing equations have been established in (19), namely:

_vv
ðiÞ
1 ¼ AðiÞv

ðiÞ
1 þ enf

ðiÞ
1 þ e2nDðiÞv

ðiÞ
1 þ e2nEðiÞv

ðiÞ
2

_vv
ðiÞ
2 ¼ BðiÞv

ðiÞ
1 þ C ðiÞv

ðiÞ
2 þ enf

ðiÞ
2

ð22Þ
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Moreover, at the notch tips we have the following boundary conditions:

Mrhðh ¼ h0Þ ¼ Mhhðh ¼ h0Þ ¼ Qhzðh ¼ h0Þ ¼ 0

Mrhðh ¼ hnÞ ¼ Mhhðh ¼ hnÞ ¼ Qhzðh ¼ hnÞ ¼ 0
ð23Þ

According to the definitions in (17), the conditions in (23) are equivalent to:

p
ð1Þ
1 ðh ¼ h0Þ ¼ 0 p

ð1Þ
2 ðh ¼ h0Þ ¼ 0

p
ðnÞ
2 ðh ¼ hnÞ ¼ 0 p

ðnÞ
2 ðh ¼ hnÞ ¼ 0

ð24Þ

Across each interface, the displacement components f ur uh w g and the internal forces components

fMrh Mhh Qhz g must be continuous. According to (17), these conditions can equivalently be written as

follows:

v
ð1Þ
1 ðh ¼ h1Þ ¼ v

ð2Þ
1 ðh ¼ h1Þ v

ð1Þ
2 ðh ¼ h1Þ ¼ v

ð2Þ
2 ðh ¼ h1Þ

..

.

v
ðn�1Þ
1 ðh ¼ hn�1Þ ¼ v

ðnÞ
1 ðh ¼ hn�1Þ v

ðn�1Þ
2 ðh ¼ hn�1Þ ¼ v

ðnÞ
2 ðh ¼ hn�1Þ

ð25Þ

These relations show the advantage of the choice of the dual variables in the present study: the multi-
material problem can be dealt with as a single material problem since the variable vectors v1 and v2 are

continuous across all the interfaces. This makes the resolution of the governing equation (19) much easier.

3. Solution method

First, we suppose that the dual variables can be expressed by the following expansion:

v1 ¼
X1
i¼1

elinuiðhÞ v2 ¼
X1
i¼1

ekinwiðhÞ ð26Þ

where li, and ki are undetermined eigenvalues; ui and wi are their corresponding eigenvectors depending
only on h. Before resolving (19) with the boundary conditions (24) and the continuity conditions (25), let us

Fig. 2. Notch formed from several anisotropic plates.
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first estimate the smallest eigenvalues and the intervals in which l and k lead to singular near-tip fields.

Consider now a small region including the crack tip, the strain energy in this region is:

U ¼ 1

2

Z
Mij

~uui;j þ ~uuj;i

2

"
þ Qj ~uuj

�
þ w;j

�#
dA ð27Þ

dA being a bidimensional element in the mid-plane. According to the variable changes (6) and (9),

Mij ¼ eMMij=r ¼ Oðrl1�1Þ, w ¼ r ~ww ¼ Oðrk1þ1Þ when r ! 0, we can write therefore:

U �
Z

rl1�1rl1�1U1ðhÞ
�

þ rk1rl1U2ðhÞ þ rk1rk1U3ðhÞ
�
rdhdr ð28Þ

When r ! 0, U must be a finite value, consequently, we have l1 P 0 and k1 P)1. Moreover, for a

singular near-tip field, li and ki must be included in the following intervals:

06 li < 1 � 16 ki < 0 ð29Þ

By introducing (26) into (19), we obtain the following eigenvalue problems:X1
i¼1

elin _uui

�
� Aie

linui

�
¼ enf 1 þ

X1
i¼1

e2nDie
linui

�
þ e2nEie

kinwi

�
X1
i¼1

ekin _wwi

�
� C ie

kinwi

�
¼ enf 2 þ

X1
i¼1

Bie
linui

� � ð30Þ

For a single isotropic plate, the matrices A � E and the vectors f 1 and f 2 in (30) are constant quantities.

As a consequence, the solutions can be found out under closed form. Some of these solutions are listed in

Appendix A.

However, for anisotropic plates, the analytical method to solve the isotropic plate problems cannot
directly be used because the quantities A � E and the vectors f 1 and f 2 in (30) are no longer constant. In

this work, we present a simple but highly accurate numerical method allowing the determination of the

singular near-tip fields.

Now consider the asymptotic near-tip fields by taking r ! 0. According to (29) and the relative dis-

cussions, the higher order terms can be neglected. As a consequence, we obtain:

_uu ¼ Au _ww ¼ Cw ð31Þ

with

A ¼

s41
s11

l 1� l
12

h3
s44 �

s214
s11

� �
12

h3
s42 �

s41s12
s11

� �
s12
s11

l � 1 0
12

h3
s24 �

s21s14
s11

� �
12

h3
s22 �

s212
s11

� �
� h3

12s11
l2 0

s14
s11

l
s12
s11

l þ 1

0 0 �1� l 0

266666666664

377777777775

C ¼

s65
s55

k þ 1ð Þ 1

hk
s66 �

s256
s55

� �
� hk

s55
1þ kð Þ2 s56

s55
k þ 1ð Þ

2664
3775 ð32Þ

where l and k satisfy (29).
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The continuity conditions across the interfaces become:

uð1Þðh ¼ h1Þ ¼ uð2Þðh ¼ h1Þ wð1Þðh ¼ h1Þ ¼ wð2Þðh ¼ h1Þ

..

.

uðn�1Þðh ¼ hn�1Þ ¼ uðnÞðh ¼ hn�1Þ wðn�1Þðh ¼ hn�1Þ ¼ wðnÞðh ¼ hn�1Þ

ð33Þ

In order to solve (31), we divide a zone, the zone i bounded by the interface h ¼ hi�1 and h ¼ hi for example,

into Ni intervals of equal angle size by inserting Ni � 1 points. Then we integrate (31) by using the trape-

zoidal approximation:

u
ðiÞ
k � u

ðiÞ
k�1 ¼ A

ðiÞ
k u

ðiÞ
k þ A

ðiÞ
k�1u

ðiÞ
k�1

� �
d
2

w
ðiÞ
k � w

ðiÞ
k�1 ¼ C

ðiÞ
k w

ðiÞ
k þ C

ðiÞ
k�1w

ðiÞ
k�1

� �
d
2

k ¼ 1; . . . ;Ni ð34Þ

where d is the interval size. From (34), we have:

u
ðiÞ
k ¼ I4 � A

ðiÞ
k

d
2

� ��1

I4 þ A
ðiÞ
k

d
2

� �
u

ðiÞ
k�1

w
ðiÞ
k ¼ I2 � C

ðiÞ
k

d
2

� ��1

I2 þ C
ðiÞ
k

d
2

� �
w

ðiÞ
k�1

l k ¼ 1; . . . ;Ni ð35Þ

where I4 is a 4� 4 unite matrix and I2 is a 2� 2 unite matrix. Hence, we immediately obtain the rela-

tionship between u
ðiÞ
0 ðh ¼ hi�1Þ and u

ðiÞ
Ni
ðh ¼ hiÞ, and that between w

ðiÞ
0 ðh ¼ hi�1Þ and w

ðiÞ
Ni
ðh ¼ hiÞ, namely:

u
ðiÞ
Ni
ðh ¼ hiÞ ¼ G ðiÞu

ðiÞ
0 ðh ¼ hi�1Þ

w
ðiÞ
Ni
ðh ¼ hiÞ ¼ gðiÞw

ðiÞ
0 ðh ¼ hi�1Þ

ð36Þ

with

G ðiÞ ¼ I4

�
� A

ðiÞ
Ni

d
2

��1 Y1
k¼Ni�1

I4

�"
þ A

ðiÞ
k

d
2

�
I4

�
� A

ðiÞ
k

d
2

��1
#

I4

�
þ A

ðiÞ
0

d
2

�

gðiÞ ¼ I2

�
� C

ðiÞ
Ni

d
2

��1 Y1
k¼Ni�1

I2

�"
þ C

ðiÞ
k

d
2

�
I2

�
� C

ðiÞ
k

d
2

��1
#

I2

�
þ C

ðiÞ
0

d
2

� ð37Þ

According to the continuity conditions (33), one has:

u
ðiÞ
0 ¼ u

ði�1Þ
Ni

w
ðiÞ
0 ¼ w

ði�1Þ
Ni

ð38Þ

Hence, we obtain the relationship between uð1Þðh ¼ hnÞ and uðnÞðh ¼ hnÞ and that between wð1Þðh ¼ h0Þ
and wðnÞðh ¼ hnÞ, namely:

uðnÞðh ¼ hnÞ ¼ Guð1Þðh ¼ h0Þ wðnÞðh ¼ hnÞ ¼ gwð1Þðh ¼ h0Þ ð39Þ

with

G ¼
Y1
i¼n

G ðiÞ g ¼
Y1
i¼n

gðiÞ ð40Þ

In practice, the trapezoidal rule provides quite a poor accuracy in calculation of the transfer matrices G
and g. The accuracy can considerably be improved by using the Richardson extrapolation technique.
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Now we write (39) in the form of the dual vectors:

q1

p1

� �
hð ¼ hnÞ ¼

G11 G12

G21 G22

� �
q1

p1

� �
hð ¼ h0Þ

q2

p2

� �
hð ¼ hnÞ ¼

g11 g12

g21 g22

� �
q2

p2

� �
hð ¼ h0Þ

ð41Þ

Since p1ðh ¼ h0Þ ¼ p1ðh ¼ hnÞ ¼ 0, and p2ðh ¼ h0Þ ¼ p2ðh ¼ hnÞ ¼ 0, from (41), one obtains immediately:

G21q1ðh ¼ h0Þ ¼ 0 g21q2ðh ¼ h0Þ ¼ 0 ð42Þ
These lead to

det G21ðlÞj j ¼ 0 det g21ðkÞj j ¼ 0 ð43Þ
Eq. (43) are the conditions required to determine the eigenvalues l and k. Iteration techniques for roots

finding can be used for the determination of l and k. In this work, the Muller method is used because it can

generate complex roots even if a real initial value of l or k is chosen, and vice-versa. Theoretically, we can

find infinite number of roots from (43). However, only the eigenvalues included in the interval
06ReðlÞ < 1 and �16ReðkÞ < 0 are interesting for singular analysis.

Once the eigenvalues determined, the vector q1ðh ¼ h0Þ and q2ðh ¼ h0Þ are obtained from (42). Therefore,

the boundary value problem posed becomes an initial value problem. Any numerical method providing a

good accuracy can be used for solving Eq. (29). Otherwise the eigenvectors / and w can straightforwardly

be obtained from (35).

4. Numerical examples

In this section, we give some numerical examples showing the accuracy and the possibility of the present

method in determining the crack-tip singularities in composite plates.

Example 1: Interfacial crack between two isotropic plates.We suppose that both of the two plates have the

same thickness and Poisson coefficient, i.e. h1 ¼ h2, m1 ¼ m2 ¼ 0:3. By taking different ratios E1=E2, we find

the following eigenvalues l and k which provide singular near-tip fields:
It is seen that the eigenvalues l are identical to those for corresponding plane stress problems and that

the eigenvalues k are identical to those for corresponding anti-plane problems. In plane stress cases, the

imagine part of l, the oscillatory index e, can be calculated from the formula e ¼ ð2pÞ�1
ln 1� bð Þ=ð1þ bÞ½ �

(Rice, 1988), b being one of the Dundurs parameter (Dundurs, 1969). Comparing with the theoretical

formula, all digits in Table 1 are significant.

Example 2: Crack meeting an interface between two mismatched orthotropic plates. We study here a

mismatch problem in which the structure is composed by two orthotropic plates, both having the same

mechanical properties, but with the material principal axes in different directions. In this example, we use
the following compliance matrix:

Table 1

Eigenvalues for an interfacial crack between two isotropic plates

E1=E2 2 3 5 10

l 0:5� 0:037306i 0:5� 0:056284i 0:5� 0:075666i 0:5� 0:093774i
k )0.5 )0.5 )0.5 )0.5
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S ¼

1=39 �0:0451=6:4 �0:3507=30:6 0 0 0

1=6:4 �0:275=30:6 0 0 0

1=30:6 0 0 0

1=4:5 0 0

Sym: 1=19:7 0

1=4:5

26666664

37777775 ð44Þ

The plate 1 is subjected to a 45� rotation around the z-axis, while the plate 2 is subjected to a )45� rotation
around the z-axis. We suppose that the crack lies in plate 2 with an inclined angle a with respect to the
interface. For different a, the eigenvalues leading to singular fields are plotted in Fig. 3.

Fig. 3. Singularities for a crack meeting an interface between two mismatched orthotropic plates.

Fig. 4. Singularities for a crack meeting an interface between two orthotropic plates, crack in stiffer plate.
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Fig. 3 shows that the eigenvalue k is not influenced by the crack incident angle, while the two eigenvalues
l1 and l2 are different from 1=2, one weaker and another stronger, when a is different from 0� or from 90�.
Example 3: Crack meeting an interface between two orthotropic plates. Now suppose that we have two

orthotropic plates bonded together but with one stiffer than another. In this example, the compliance

matrix of plate 1, the stiffer one, is taken as S1 ¼ S, S being given in (44), and the compliance matrix of

plate 2, the less stiff plate, is taken as S2 ¼ 2S1. Let the crack be situated first in plate 1, then in plate 2. The

Fig. 5. Singularities for a crack meeting an interface between two orthotropic plates, crack in the less stiffer plate.

Fig. 6. A notch symmetrically formed from two orthotropic plates.

Table 2

Singularities near the notch-tip formed from two orthotropic plates

Notch angle l1 l2 k

0� 0:5þ 0:0412294i 0:5� 0:0412294i �0.5

60� 0.5450832 0.8646145 �0.3056547

120� 0.6812632 1 �0.1463226

180� 0.9886141 1 0

240� 1 1.79255 0.2068588
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eigenvalues leading to singular fields are computed for different crack incident angles and plotted in Figs. 4

and 5. In both cases, one can observe the oscillationary nature for small crack incident angle with respect to

the interface. When the crack lies in the less stiff (stiffer) plate, weak (strong) singularities are obtained.

These properties are similar to those observed in the corresponding plane problems (Li et al., 1997, 2001).

Example 4: Notch formed by two orthotropic plates. Consider a notch formed symmetrically from two

orthotropic plates (Fig. 6). Same material properties are used as in the precedent example, i.e., S1 ¼ S, S
being given in (44), S2 ¼ 2S1. The first three eigenvalues are evaluated and listed in Table 2 for different

notch opening angles. It is seen that the stress singularities decrease as the notch opening angle increases. It

is also interesting to observe that the stress singularities may exist even for a 180� notch.
Example 5: Crack in an orthotropic plate. Let us consider a crack in a single orthotropic plate and

evaluate the leading order field near the crack tip. This problem has been solved by Yuan and Yang (2000)

Fig. 7. Angular variations of the bending moments in an orthotropic plate, symmetrical near-tip field.

Fig. 8. Angular variations of the bending moments in an orthotropic plate, anti-symmetrical near-tip field.

5780 J. Li / International Journal of Solids and Structures 39 (2002) 5767–5785



using the Stroh formalism. It can naturally be solved by using the present approach. The compliance matrix

used in this example is given in (44). Figs. 7 and 8 illustrate the comparison between the angular variations

of the bending moments computed from both the approaches. It can be seen that the two approaches

provide exactly the same results. It is to note that the present approach does not present any degeneration
problem, it can be used in isotropic problems as well as in anisotropic ones.

5. Concluding remarks

In this work, we have developed a new approach to analyze the near-tip fields of through-the-thickness

cracks in thin plates subjected to bending. The Reissner plate theory is used in the present approach. By

establishing dual differential equations in the frame of the Hamiltonian system, a large range of problems in
this topic, some of them are somewhat difficult to treat with the traditional techniques, can be solved in

rather a simple way.

Appendix A

For a single isotropic plate with a semi-infinite crack, the asymptotic fields near the crack tip can be

written in closed form. The present approach permits to find out the solutions more easily comparing to the

traditionally used methods.
The governing differential equation (30) can be resolved by recurrence. First, we seek the solutions for

i ¼ 1 and 2 which need only to resolve the homogeneous differential equations. Then we increase succes-

sively i and some non-homogeneous differential equations are obtained. The non-homogeneous terms are

already known from lower order solutions. Thus we can find successively all eigenvalues and eigenvectors in

expansions (26).

A.1. Solutions for i ¼ 1 and 2

Consider the smallest eigenvalues (29). We can neglect the right-hand-side terms in (30), because, when

r ! 0, n ! �1 these terms tend to zero comparing those in the left hand side. We have therefore:

_uui ¼ Aiui i ¼ 1; 2 ðA:1Þ

_wwi ¼ C iwi i ¼ 1; 2 ðA:2Þ
with

Ai ¼

0 1� li
24ð1þ mÞ

Eh3
0

�1� mli 0 0
12ð1� m2Þ

Eh3

�Eh3

12
l2

i 0 0 1� mli

0 0 �1� li 0

2666666664

3777777775
i ¼ 1; 2

C i ¼
0

2ð1þ mÞ
Ehk

� Ehk
2ð1þ mÞ 1þ kið Þ2 0

2664
3775 ðA:3Þ
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The solutions of the homogeneous differential equation systems (A.1) and (A.2) are easy to found out. By

performing a standard eigenfunction analysis, we can easily obtain:

l ¼ n=2
k ¼ n=2� 1

n ¼ 0; 1; 2; . . . ðA:4Þ

Here the eigenvalues l < 0 and k ¼ �1 are omitted according to Eq. (29).

The general solutions of (A.1) and (A.2) are:

u
ðgÞ
i ¼

�ai
1

Dl
cosð1þ liÞh þ ci

v � li

Dlið1þ liÞ
cosð1� liÞh

ai
1

Dli
sinð1þ liÞh � ci

v þ li

Dlið1þ liÞ
sinð1� liÞh

ai sinð1þ liÞh þ ci
1� li

1þ li
sinð1� liÞh

ai cosð1þ liÞh þ ci cosð1� liÞh

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;

þ

�bi
1

Dli
sinð1þ liÞh þ di

v � li

Dlið1þ liÞ
sinð1� liÞh

�bi
1

Dli
cosð1þ liÞh þ di

v þ li

Dlið1þ liÞ
cosð1� liÞh

�bi cosð1þ liÞh � di
1� li

1þ li
cosð1� liÞh

bi sinð1þ liÞh þ di sinð1� liÞh

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ðA:5Þ

w
ðgÞ
i ¼

1þ ki

G
ei cosð1þ kiÞh þ fi sinð1þ kiÞh½ �

ei cosð1þ kiÞh � fi sinð1þ kiÞh

( )
ðA:6Þ

with v ¼ ð3� mÞ=ð1þ mÞ, G ¼ E=ð2ð1þ mÞÞ and D ¼ ðEh3Þ=ð12ð1þ mÞÞ. ai; . . . ; fi are constant coefficients

and satisfy the following relationships:

ð1þ liÞai ¼ ð1� liÞci bi ¼ di if li ¼ 1=2; 3=2 . . .

ai ¼ �ci ð1þ liÞbi ¼ �ð1� lÞdi if li ¼ 0; 1; 2 . . .
ðA:7Þ

and

ei ¼ 0 if ki ¼ �1=2; 1=2 � � �
fi ¼ 0 if ki ¼ �1; 0; 1 � � �

ðA:8Þ

The eigenvalues l1 ¼ 0 and k1 ¼ �1 correspond to some rigid motions of the plate. With the eigenvalues
l2 ¼ 1=2 and k2 ¼ �1=2, we obtain the singular near-tip field. Return to conventional notations, we have:

ur ¼
K1z
2D

ffiffiffiffiffiffi
r
2p

r �
� cos

3h
2
þ 2vð � 1Þ cos h

2

�
þ K2z

2D

ffiffiffiffiffiffi
r
2p

r
3 sin

3h
2

�
� 2vð � 1Þ sin h

2

�

uh ¼
K1z
2D

ffiffiffiffiffiffi
r
2p

r
sin

3h
2

�
� 2vð þ 1Þ sin h

2

�
þ K2z

2D

ffiffiffiffiffiffi
r
2p

r
3 cos

3h
2

�
� 2vð þ 1Þ cos h

2

�

w ¼ 1þ m
Ehk

ffiffiffiffiffiffi
r
2p

r
K3 sin

h
2

ðA:9Þ
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and

Mrr ¼
K1

4
ffiffiffiffiffiffiffi
2pr

p
�
� cos

3h
2
þ 5 cos

h
2

�
þ K2

4
ffiffiffiffiffiffiffi
2pr

p 3 sin
3h
2

�
� 5 sin

h
2

�

Mhh ¼
K1

4
ffiffiffiffiffiffiffi
2pr

p cos
3h
2

�
þ 3 cos

h
2

�
þ K2

4
ffiffiffiffiffiffiffi
2pr

p
�
� 3 sin

3h
2
� 3 sin

h
2

�

Mrh ¼
K1

4
ffiffiffiffiffiffiffi
2pr

p sin
3h
2

�
þ sin

h
2

�
þ K2

4
ffiffiffiffiffiffiffi
2pr

p 3 cos
3h
2

�
þ cos

h
2

�

Qrz ¼
K3ffiffiffiffiffiffiffi
2pr

p sin
h
2

Qhz ¼
K3ffiffiffiffiffiffiffi
2pr

p cos
h
2

ðA:10Þ

The constants K1 and K2 are similar to the stress intensity factors in plane crack problems while K3 is

similar to the stress intensity factor KIII for anti-plane deformation cracks. These results are identical to
those obtained by Hartranft and Sih (1968), using the Reissner plate theory and the integral transformation

technique. Here we obtain them by using elementary mathematical tools.

A.2. Solutions for i > 2

Knowing the values of li, ki and the solutions for i ¼ 1 and 2, we can seek the higher orders solu-

tions for i > 2. By gathering the terms of the same order in (30), we obtain the following recurrence

equations:

_uu3 � A3u3 ¼ f 1 þ E1w1

_uu4 � A4u4 ¼ E2w2

_uui � Aiui ¼ E i�2wi�2 þDi�4ui�4 iP 5

ðA:11Þ

and

_ww3 � C3w3 ¼ f 2 þ B1u1

_wwi � C iwi ¼ Bi�2ui�2 iP 4
ðA:12Þ

(A.11) and (A.12) are non-homogeneous differential equation systems. Their solutions include two parts:

the general ones and the particular ones. The general solutions have been given in (A.5) and (A.6). The
particular solutions for iP 3 can be found out successively by considering the right hand terms in (A.11)

and (A.12) already known from lower order solutions. We list here only the particular solutions for i ¼ 3

and 4.

(1) for i ¼ 3:

u
ðpÞ
3 ðl3 ¼ 1Þ ¼ � qm

Ehk 0 0 0
	 
T

w
ðpÞ
3 ðk3 ¼ 0Þ ¼ � 1

G q 0
	 
T ðA:13Þ
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(4) for i ¼ 4:

u
ðpÞ
4 ðl4 ¼ 3=2Þ ¼ f2

4

3ð1þ mÞh2 sin
h
2

4ð2þ 3mÞ
3ð1þ mÞh2 cos

h
2

Ehk
12ð1þ mÞ cos

h
2

0

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
w

ðpÞ
4 ðk4 ¼ 1=2Þ ¼ a2

1
D

4ð7þ mÞ
3ð1þ mÞ cos

3h
2
� 4ð1� mÞ

1þ m
cos

h
2

� �
�120

h2ð1þ mÞ sin
3h
2
þ sin

h
2

� �
8>>><>>>:

9>>>=>>>;þ b2

4ð1� mÞ
Dð1þ mÞ sin

h
2

60

h2
cos

3h
2
� 2

1þ m
cos

h
2

� �
8>><>>:

9>>=>>;
ðA:14Þ

It is to note that the results listed in this appendix are identical to those found in previous works, using

displacement eigenfunction method (Sosa and Eischen, 1986, Su and Leung, 2001) or using Stroh for-

malism (Yuan and Yang, 2000). One of the advantages of the present method is that the displacement and

internal force components are obtained simultaneously.
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