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Abstract

In this paper, we dealt with the problems concerning the singularities in the vicinity of a notch tip, or a crack tip as its
special case, formed from several anisotropic plates subjected to bending and shearing forces. Attention was focused on
the near-tip asymptotic analysis in monoclinic materials, which can be considered as the most general anisotropy in
plate structures. The Reissner assumptions of the plate theory were adopted. First, the fundamental equations for a
monoclinic plate were established in the cylindrical coordinate system by means of the Hellinger—Reissner variational
principle. Second, by introducing the suitable dual variable vectors, the governing equations were established in the
frame of the Hamiltonian system. These governing equations are particularly efficient to deal with multi-material
problems because all variables used are continuous across the interfaces. Third, a simple but highly accurate numerical
algorithm was proposed to resolve the governing equations. Finally, several numerical examples have been given in
order to test the efficiency and the simplicity of the present theory in studying the asymptotic fields in the vicinity of a
notch tip formed from several anisotropic plates.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Crack; Notch; Plate; Asymptotic analysis; Anisotropy; Near-tip field; Singularity; Bending

1. Introduction

Stress concentration in thin plates with cracks has been a subject of numerous researches for several
decades due to its importance in analysis of thin-wall structures such as aircraft fuselages. The principal
theories studying the asymptotic fields near a crack tip in a plate loaded by bending forces were established
in the 1960s of the precedent century (Williams, 1961; Sih et al., 1962; Knowels and Wang, 1960; Hartranft
and Sih, 1968, etc.). More detailed analyses have been added into these theories later (Delale and Erdogan,
1979; Murthy et al., 1981; Boduroglu and Erdogan, 1983; Sosa and Eischen, 1986; Hui and Zehnder, 1993;
Young and Sun, 1993; Su and Leung, 2001, etc.). In these analyses, two plate theories, the Poisson—Kir-
chhoff theory and the Mindlin—Reissner theory were essentially followed. The Poisson—Kirchhoff theory
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provides rather simple mathematical solutions, but gives some physically incorrect behaviors about the
near-tip fields. In fact, according to this theory, for cracks in homogeneous elastic plates, the transverse
shear stresses vary asymptotically as »~3/2 instead of 7~!/? as r tends to zero. On the other hand, Reissner’s
thin plate theory gives physically more reasonable results, but the solution of the six-order differential
equations remains difficult for many problems posed.

The next studies were carried out in determining the near-tip fields of a crack lying along or normally
touching the interface of a bimaterial plate. Sih and Rice (1964) have applied the Poisson—Kirchhoff theory
and solved the bimaterial plate problem with an interface crack. The Riemann—Hilbert formulation was
later given by Sih (1962). The Kirchhoff theory has also been used to solve the bimaterial plate problem
with a crack normally touching the interface (Sih and Chen, 1981).

Anisotropy is a very important property in composite plates. The crack-tip fields in anisotropic plates
have been first studied by Ang and Williams (1961), who presented a closed form solution for an ortho-
tropic, infinite plate having a finite crack within the context of the Kirchhoff theory. Using the similar
concept, Sih and Chen (1981) further extended to an anisotropic plate using the Lekhnitskii formalism.
Recently, Yuan and Yang (2000) studied the same problem by applying the Reissner plate theory and the
Stroh formalism.

It is obvious that problems with cracks or notches in anisotropic plates have not been thoroughly studied
yet, especially when the cracks or notches are formed from two or more anisotropic plates. In fact, these
configurations can be found in many engineering structures such like the welded structures, composites and
so on. In this paper, we propose to find out asymptotic fields near a notch tip formed by several monoclinic
thin plates subjected to bending and transverse shearing forces. This is a more general situation in this kind
of structures. The corresponding crack problems or bimaterial problems can be treated as its special cases.
The existing traditional theories dealing with the anisotropic materials are quite fastidious in solving the
posed problem. In this work, we will use a new methodology proposed by Zhong (1995) which consists in
introducing Hamiltonian system, which is usually studied in rational mechanics, into continuum mechanics.
By choosing appropriate dual variables in the state space, we have established the governing equations on
the basis of the Reissner plate theory. We also proposed a simple but highly accurate numerical method to
solve the governing equations. Finally, we selected a few examples, some of them have been solved in the
literature, and others not yet. These examples were solved by means of the present method in order to test
its accuracy and its potential possibilities for further applications.

2. Governing equations of the problem

Let us consider a monoclinic plate subjected to bending. In fact, the general anisotropy is rather rare in
plate-based structures. The composite plates use to present at least one symmetrical plane parallel to the
mid-plane, this leads to a monoclinic system in the most general case.

Let us attach to a plate a cylindrical coordinate system (r,0,z) and a Cartesian coordinate system
(x =rcos0,y =rsin0,z). The r—0 or x—y plane corresponds to the mid-plane of the plate. We first write the
stress components in the Cartesian coordinate system and in the cylindrical coordinate system as
6y.={0. 0, 0. 0y 0. 0 }T and 6,0, ={0, 09 0. 049 0. o0y }T respectively. The corre-
sponding strain components are &,. = {& & & 7V Ve U }T and o, ={e & & V9 Ve Vo }T
respectively. One can write the strain—stress relationship for an elastic monoclinic material in the Cartesian
coordinate system, as follows:

&z = Sx}zo-xyz (1)

S.,- 18 the compliance matrix of the material, namely:
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si Sz osi3 osie 0 0
S0 S» S s 0 0
531 s s sy 0 0 (2)
S41 Sar Sas Sas O 0
0 0 0 0 S55  Ss56
0 0 0 0 S65  S66

Sx}z =

s;(i,j =1, 6) are the elastic compliances. In the cylindrical system, the stress and strain components can be
obtained from their corresponding quantities in the Cartesian system with a coordinate rotation, namely:

09 = T(TO-X_}Z &0z = Ts;sx;z (3)
Therefore, the stress—strain relationship in the cylindrical system is:

& = SrOzo-r'Oz

with
Sr9z - Tasxsz;l (4)
where
cos? 0 sin® 0 0 2cos0Osinf 0 0 7
sin” 0 cos? 0 0 —2cos0sinf 0 0
T — 0 0 1 0 0 0
! —cosOsinf cosOsinf 0 cos?6 —sin’0 0 0
0 0 0 0 cosf sinf
L 0 0 0 0 —sinf cos? |
cos? 6 sin® 0 0 cosOsin 6 0 0 7
sin® 0 cos? 0 0 —cosOsind 0 0
T, — 0 . 0 . 1 0 . 0 0 5)
—2cos0sinf 2cosOsinl 0 cos>0 —sin” 0 0 0
0 0 0 0 cos sin0
L 0 0 0 0 —sinf cosf.

Eq. (4) shows that in the cylindrical system, the compliance matrix is not a constant matrix but function of

0. Nevertheless, the compliance matrix S,. keeps always the same mathematical structure as S, i.e.,
Su 0 . . . . ) .
S0 = [ 6‘4 s ], where Sy is a 4 x 4 symmetrical matrix and S, is a 2 x 2 symmetrical matrix. Here-
o)

after we work exclusively in the cylindrical system, therefore the subscript ,4, will be omitted in order to
simplify the notations.

In the cylindrical coordinate system, the conventional notations are used in this paper to describe the
mechanical quantities in a plate, see Fig. 1:

Displacement components: {u, uy w};

Rotation components: {a, u};
Bending moments: {M,, My M¢};
Shear forces: {0: O}

The main assumptions of the Mindlin—Reissner theory state that the in-plane displacements u, and uy
vary linearly through the thickness and that the displacement w is independent of z, i.e.,
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Fig. 1. Internal forces and displacement components.

u, = zit,(r,0)  uy = zitg(r,0) w=w(r,0) (6)

where @, and iy are functions independent of the z-coordinate.
The boundary conditions on the both sides of the plate are prescribed as follows:

0,=—q 0.=0p,=0 onz=n/2

(7)

0.=0 06.=0p,=0 onz=-h/2

where ¢ is the normal pressure applied on the plate surface and / is the thickness of the plate.
According to the plate theory, we assume the following relationships between the stress components and
the internal force components:

12z 12z 12z
Oy = FMF}” 0gp = ?Mﬂ() [ ?Mr()

3 | 4z2 0 3 1 4z2 0 3 22 8 23 n 2 (8)
Oz = 57 T 5 rz 06z = =7 75 )z Oz = —{q~ ) Y

2h 7 == 2n n )< T4\"n 31w "3

In order to solve the problem more easily, we perform the following variable changes:

r==e

Mrr = M()G = matll Mr9 = el (9)
r r r

w=rw

The functional of the Hellinger—Reissner principle is defined as follows:

B /V[aTET(V)u—fTu—U*(a)]dV—/(XI—YZ)udS— X'ads } =0 (10)

So Su

where V is the volume of the plate; fis the body force vector, f=0 is considered in this work; E(V) is a
differential operator, ¢ = E*(V)u; U* is referred to as the complementary energy density; # = @ on S, and
X, = X, on S, are the prescribed boundary conditions. By substituting (6) and (8) into (10), and by taking
the variable changes (9) into account, we can rewrite the Hellinger—Reissner principle (10) as follows:
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6/ ~ - - - - o
5{ / {— (SHMf,, + s M, + S44M,.29) + 2(S]2MrrM00 + s1aM,, M, + 524M00Mr0)
S

73
Ra, - _ _ 13k e
—e° ?q (S13Mrr + 523 Mg + S36Mr0) +e* Wssaqz + Tk (SSSQ,ZZ- +56605, + 2S56Q"2Q92)
oM, oM, ~ 2 _ oM,y oMy 2 -
— My — ¢ rz r MF - - z
—|—< aé —+ o0 00 (S Q)u +< 65 + 20 + 0 € Q9 Uy
(aa%” + @anaz +0,.+ e5q> w] dédo — / (terms on boundaries) dS} =0 (11)

with S,, being the mid-plane of the plate. Perform now the variations with respect to ]\7[,«/, 0O; and u;. After
some mathematical deductions, we can find the following fundamental equations:
Equilibrium equations:

61\~4,, aMr() 7 26
- M - ¢ rz
a¢ + o0 00 =¢e-0
M,y My | ~ .
Mot S0 4 g = 0, (12
6Qrz 6Q()z o 14
Relationships between the displacements and internal force components:
ou,
ac ~ Si Sz Si4 M, P IE
i, + % = E N s N M, i s
U+ = | s S s Moo R
diiy i, S41 S42  Sa4 M,y S34
e up + 20 (13)
i ow
"+ W e _ 1 [Sss ss6 | [ O
_ 0w Bk [ ses ses ] | Qp
0+ @

In the case of the isotropic plate, the material coefficients s; are constants: si; = s = s33 = 1/E;
S12 = 823 = 813 = V/E, S44 = S55 = S¢6 — 2(1 + V)/E and S14 = S24 = S394 = 0. In this case, the equilibrium
equations remain identical to (12), while the relationships between the displacements and internal force
components become:

O,
aé@ . 1 —v 0 M, . -V
-, Oug L = L_eq)
btag (Tme| b0 Mo ¢ = Tk
o """ a0
i ow
u, w aé _2(1+V){Qrz}
~ aﬁ/ B Ehk QHZ
) +@
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In order to establish the governing equations, we first eliminate the quantities M,, and Q,. from the
fundamental equations. From the first and the forth equations of (13), we can write:

i, = L (120 ) L (bt + 08
= 12 0¢ 10 S S12Mgg T S14M 9

(15)
hk 0
Qrz (ur+w+ W) _SiﬁQ()z

Ss5 o¢ 855

By substituting (15) into Egs. (12) and (13) then by denoting (e) = 0/00, we obtain:
- S41 612, 0 12 S%4 ~ 12 S41512 '\ eéq S41513
= 1— - My +— — = My — — —
H=neEt ( a:)“" s < sy )Mot g S g JMe = (s
- S12 0 . 12 21514 '\ 12 S%Z . Céq $21513
= —==-1)a+— — M,y +— ——= M,y —— —
Up (S“ ¢ )u +h3 (S24 s ) 9+h3 (Szz s " Tk $23 s
I 565 - ~ 0 1 Sgé
Uy = 1 - )z
W= I i, — il + ( 3 f) <566 . Qo

~ o %, oM, 0\ ~ - h? - hk ow
My=—-—F— u_’_sﬁ 6-1—(1+S£—)M00—eé—qsﬁ+ezg—<ﬂr+ﬁ/+—w — X,

1251, &%  sn 0 s11 0¢

0
My =— ( aﬁ) M,y + €*Qy.

. 0 hk 0 .,
Qoz=—<1+af)l (u, +w+a_2}> —SSGQoz] —e°q (16)

We define the following duals variables:

‘11:{5# ﬁH}T 1’1:{]\7@9 MHH}T

N (17)
gG=w p="0s
and
T T
={a '} wn={a n} (18)
Therefore, (16) can be rewritten as follows:
v = Av; +e°f, +¢e*Dy; +e¥Ev
1 1 fi 1 2 (19)

vy, = BV1 + CV2 +€£f2

sa® 020 s 12 sase ]
s11 08 o¢ h? “ S11 h? ? S11

S12 0 12 21514 12 S2
R | 0 = — = il V1
4 = sy 08 n <SZ4 S11 ) n <S22 S11

with

_ h3 6_2 0 S14 0 S12 0
1251, 9&2 511 08 sy 08
0 0 -1 —E 0
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Sﬁ<3+1> i<s66—ﬁ) %6s 100
8§55 \ 0 hk 855 §55
T omk 2\2 d B=1 0
21+ Ss6 — 41 __<1+6_5) 0 0 0
855 o¢ 555 \ 08 855
i <S41513 B s43>
000 0 0 0 hlk S
0 0 $21813
Wk |10 0 0 O — SR
D—=— E= | hk 0 S65 flzq hk( S11 S23>
sss |10 1 0 O — | 1+= -
000 0 Ss5 o¢ 855 h™ s13
0 1 10S11
0
0
=’} (20)

In the isotropic case, the governing differential equations are always written as (19) but with the following
matrices:

0 24(1+v)
—? 2(1
—l—vg 0 0 12(1 —v?) 0 (1+v)
e o¢ ER c_ Ehk
| ER @ 0 |_,0 __Bnk (0N
12 07 "¢ 2(1+v) aé
0
0 0 —1-= 0
L o¢ 1
0000
I 0 -1 0 0
B=|_ Bk ([, 3Y o 44 D:thk 0000
ST +v) o (I+v){0 1 0 0
0000
- 0
0 0
v(l +v)
0 0 Ehk 0
E = Ehk E fi=4q 2 fr=q (21)
1+ 0 vh -1
2(1+4v) oc -
10
I 0 1 0

Let us now consider a notch formed from several elastic anisotropic materials (Fig. 2). The notch tip is
taken as the origin of the cylindrical coordinate system and the notch front as the z-axis. The plate 1
occupies the sectorial domain [0, 6], named zone 1; the plate 2 occupies the zone 2, bounded by [0, 6],
and so on. Referring to Fig. 2, we adopt the superscript (i) to indicate the quantities in the zone i, for
example, v, A" etc. In each zone, the governing equations have been established in (19), namely:

5 = A0 4 DU 4 BN )
) = B + €Y +efY
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plate n
zone n

notch

Fig. 2. Notch formed from several anisotropic plates.

Moreover, at the notch tips we have the following boundary conditions:

M,y(0 = 0y) = Myp(0 = 0p) = 0p.(0 = 0p) =0

23
M.y(0=10,) =Mp(0 =0, =0u.(0=0,)=0 (23)
According to the definitions in (17), the conditions in (23) are equivalent to:
MO =0)=0 pO=0)=0
pi (0=00) Py (0=100) 24)

p0=0,)=0 pO=0,)=0

Across each interface, the displacement components {u, uy w} and the internal forces components
{M,y My Qp.} must be continuous. According to (17), these conditions can equivalently be written as
follows:

w(O=0)=v20=0) wWO=0)=r0=0)
: (25)
WO0=0,0)=v"0=0,1) W 0O0=0,1)=»"(0=0,)

These relations show the advantage of the choice of the dual variables in the present study: the multi-
material problem can be dealt with as a single material problem since the variable vectors v; and v, are
continuous across all the interfaces. This makes the resolution of the governing equation (19) much easier.
3. Solution method

First, we suppose that the dual variables can be expressed by the following expansion:

n=S et 0) v &) (26)
i=1 i=1

where y;, and /; are undetermined eigenvalues; ¢; and y; are their corresponding eigenvectors depending
only on 6. Before resolving (19) with the boundary conditions (24) and the continuity conditions (25), let us
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first estimate the smallest eigenvalues and the intervals in which p and A lead to singular near-tip fields.
Consider now a small region including the crack tip, the strain energy in this region is:

1
v=s [

dA4 being a bidimensional element in the mid-plane. According to the variable changes (6) and (9),
My = M,;/r=0(""), w=rw=0(@""") when r — 0, we can write therefore:

Ui j + Ui _
My =2 0 iy + w,) | da (27)

U= / [ U (0) + 77 Us (0) + 777 U (0) | rdOdr (28)

When r — 0, U must be a finite value, consequently, we have g, > 0 and 4; > —1. Moreover, for a
singular near-tip field, x;, and 4; must be included in the following intervals:

O <1l —1<4<0 (29)
By introducing (26) into (19), we obtain the following eigenvalue problems:

3 (eu,c &, — Az-e"'étpi) —&f, Z(ezc DS, + & Eiem,,,j)
i=1

i—1

(30)

Z (eifﬁl]/i - Cie"fé'#i) =cfy + Z (Biem‘l’i)
i=1 i=1

For a single isotropic plate, the matrices A ~ E and the vectors f, and f, in (30) are constant quantities.
As a consequence, the solutions can be found out under closed form. Some of these solutions are listed in
Appendix A.

However, for anisotropic plates, the analytical method to solve the isotropic plate problems cannot
directly be used because the quantities 4 ~ E and the vectors f| and f, in (30) are no longer constant. In
this work, we present a simple but highly accurate numerical method allowing the determination of the
singular near-tip fields.

Now consider the asymptotic near-tip fields by taking » — 0. According to (29) and the relative dis-
cussions, the higher order terms can be neglected. As a consequence, we obtain:

p=Ap Y=Cy (31)
with

S41 1 12 S%4 12 S418512
- — — sy — —= — | 540 —
s1 u Iz h3 44 S1 h3 42 S11

S 12 $21514 12 5T,
12 0 e _ e _n
A == S11 K h3 <S24 S11 > h3 <S22 S11

oo, S14 512
— — — 1
12S11'u S11 S11M+
L 0 0 —1—pu 0 |
1 2
sﬁ( +1) ﬁ(&m—si)
C— s;:k S55 (32)
)
—=(142* 20+
§55 855

where p and A satisfy (29).
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The continuity conditions across the interfaces become:
eV (0=0)=¢20=0) yO=0)=yP0=0)
(33)

P O=0,1)= "0 =0,1) WO =0,) =y (0 =0,)

In order to solve (31), we divide a zone, the zone i bounded by the interface 6 = 0, and 0 = 0, for example,
into N; intervals of equal angle size by inserting N; — 1 points. Then we integrate (31) by using the trape-
zoidal approximation:

o~ ol = (40l 4003
o=l = (w4
where d is the interval size. From (34), we have:
o) = (L= A"4) " (1 )l
W= (- cld) (e et

where I, is a 4 x 4 unite matrix and I, is a 2 x 2 unite matrix. Hence, we immediately obtain the rela-
tionship between (p(()’)((? =6,_,) and (p%?(@ = 6;), and that between 1//8”(0 =6,.,) and 1//5\’,3(0 = 6;), namely:

<Pz(é,)(9 =0;) = G(i)wf)i)(@ = 0;-1)
Ui (0= 0,) = g9 (0= 0,)

k=1,....N; (34)

1,....N; (35)

(36)

with

) d -1 1 d d -1
0= (1-cy> L+C)S ) (L-c)3
8 ( 2 N5 Al >+ € 3 2 k5

According to the continuity conditions (33), one has:
i i—1 i i—1
o=l W=l 38)

Hence, we obtain the relationship between ¢(V)(0 = 0,) and ¢ (0 = 0,) and that between " (0 = 0))
and ¥ (0 = 0,), namely:

e"(0=0,)=Go(0=10) ¥"(0=0,) =gy (0=0) (39)

with
1
G= H GV g= Hg(i) (40)

In practice, the trapezoidal rule provides quite a poor accuracy in calculation of the transfer matrices G
and g. The accuracy can considerably be improved by using the Richardson extrapolation technique.
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Now we write (39) in the form of the dual vectors:

o fe=oo=[a ey fo-o

U go=m= [ lGe=m

Since p,(0 = 0y) = p,(0 = 0,) =0, and p,(0 = 0y) = p,(0 = 0,) = 0, from (41), one obtains immediately:

(41)

Gyq,(0=100)=0 £14,(0=100) =0 (42)
These lead to

det |Gy (p)| =0 detlgy(4)[=0 (43)

Eq. (43) are the conditions required to determine the eigenvalues u and 4. Iteration techniques for roots
finding can be used for the determination of x and 4. In this work, the Muller method is used because it can
generate complex roots even if a real initial value of u or / is chosen, and vice-versa. Theoretically, we can
find infinite number of roots from (43). However, only the ecigenvalues included in the interval
0<Re(u) <1 and —1 <Re(1) < 0 are interesting for singular analysis.

Once the eigenvalues determined, the vector ¢,(0 = 0) and ¢,(0 = 0,) are obtained from (42). Therefore,
the boundary value problem posed becomes an initial value problem. Any numerical method providing a
good accuracy can be used for solving Eq. (29). Otherwise the eigenvectors ¢ and ¥ can straightforwardly
be obtained from (35).

4. Numerical examples

In this section, we give some numerical examples showing the accuracy and the possibility of the present
method in determining the crack-tip singularities in composite plates.

Example 1: Interfacial crack between two isotropic plates. We suppose that both of the two plates have the
same thickness and Poisson coefficient, i.e. #; = hy, vi = v, = 0.3. By taking different ratios E,/E,, we find
the following eigenvalues u and A which provide singular near-tip fields:

It is seen that the eigenvalues u are identical to those for corresponding plane stress problems and that
the eigenvalues 4 are identical to those for corresponding anti-plane problems. In plane stress cases, the
imagine part of y, the oscillatory index ¢, can be calculated from the formula ¢ = (2) ' In[(1 — §)/(1 + f)]
(Rice, 1988), f being one of the Dundurs parameter (Dundurs, 1969). Comparing with the theoretical
formula, all digits in Table 1 are significant.

Example 2: Crack meeting an interface between two mismatched orthotropic plates. We study here a
mismatch problem in which the structure is composed by two orthotropic plates, both having the same
mechanical properties, but with the material principal axes in different directions. In this example, we use
the following compliance matrix:

Table 1
Eigenvalues for an interfacial crack between two isotropic plates
E\/E, 2 3 5 10
u 0.5+ 0.037306; 0.5+ 0.056284i 0.5+ 0.075666i 0.5+ 0.093774i

A -0.5 -0.5 -0.5 -0.5
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0.6
0.55 A Mo
0.5
0.45 1
0.4 1
0.35
0.3 gf////% 7 i
0251 K5 W/i

0.2 \
0.15 crack

0.1 T T T T

0 10 20 30 40 50 60 70 80 90
o (degree)

Fig. 3. Singularities for a crack meeting an interface between two mismatched orthotropic plates.

0.7

0.6

05 Real(jty)

0.4 -
Real(u;)
0.3 A

0.2 S,

0.1 1 S o
Imag(p)=—Imag(u,)
0 T T T T T T T T

0 10 20 30 40 50 60 70 80 90
o (degree)

Fig. 4. Singularities for a crack meeting an interface between two orthotropic plates, crack in stiffer plate.

1/39 —0.0451/64 —03507/306 0 0 0

1/64  —0275/306 0 0 0

- 1/30.6 o 0 o0
§= 1/45 0 0 (44)

Sym. /197 0

1/4.5

The plate 1 is subjected to a 45° rotation around the z-axis, while the plate 2 is subjected to a —45° rotation
around the z-axis. We suppose that the crack lies in plate 2 with an inclined angle « with respect to the
interface. For different o, the eigenvalues leading to singular fields are plotted in Fig. 3.
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0.6

0.5 7

0.4

0.3 4

0.2 A

0.1 4

Imag(u)=—Imag(i)

Real(u,)

Real(u)

S

S o

crack

Fig. 5. Singularities for a crack meeting an interface between two orthotropic plates, crack in the less stiffer plate.

10 20

Notch
opening
angle 6

30

40

50 60 70 80 90

o (degree)

M

\4

S>

Fig. 6. A notch symmetrically formed from two orthotropic plates.

5779

Table 2

Singularities near the notch-tip formed from two orthotropic plates
Notch angle I 1y A
0° 0.5+ 0.0412294i 0.5 — 0.0412294; -0.5
60° 0.5450832 0.8646145 —0.3056547
120° 0.6812632 1 —0.1463226
180° 0.9886141 1 0
240° 1 1.79255 0.2068588

Fig. 3 shows that the eigenvalue 4 is not influenced by the crack incident angle, while the two eigenvalues
w, and p, are different from 1/2, one weaker and another stronger, when « is different from 0° or from 90°.
Example 3: Crack meeting an interface between two orthotropic plates. Now suppose that we have two
orthotropic plates bonded together but with one stiffer than another. In this example, the compliance
matrix of plate 1, the stiffer one, is taken as §; = S, S being given in (44), and the compliance matrix of
plate 2, the less stiff plate, is taken as S, = 2. Let the crack be situated first in plate 1, then in plate 2. The
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— : Yuan and Yang’s theory
O : Present approach

Fig. 7. Angular variations of the bending moments in an orthotropic plate, symmetrical near-tip field.

— : Yuan and Yang’s theory
O : Present approach

-4

Fig. 8. Angular variations of the bending moments in an orthotropic plate, anti-symmetrical near-tip field.

eigenvalues leading to singular fields are computed for different crack incident angles and plotted in Figs. 4
and 5. In both cases, one can observe the oscillationary nature for small crack incident angle with respect to
the interface. When the crack lies in the less stiff (stiffer) plate, weak (strong) singularities are obtained.
These properties are similar to those observed in the corresponding plane problems (Li et al., 1997, 2001).

Example 4: Notch formed by two orthotropic plates. Consider a notch formed symmetrically from two
orthotropic plates (Fig. 6). Same material properties are used as in the precedent example, i.e., S| =S, S
being given in (44), S, = 28|. The first three eigenvalues are evaluated and listed in Table 2 for different
notch opening angles. It is seen that the stress singularities decrease as the notch opening angle increases. It
is also interesting to observe that the stress singularities may exist even for a 180° notch.

Example 5: Crack in an orthotropic plate. Let us consider a crack in a single orthotropic plate and
evaluate the leading order field near the crack tip. This problem has been solved by Yuan and Yang (2000)
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using the Stroh formalism. It can naturally be solved by using the present approach. The compliance matrix
used in this example is given in (44). Figs. 7 and 8§ illustrate the comparison between the angular variations
of the bending moments computed from both the approaches. It can be seen that the two approaches
provide exactly the same results. It is to note that the present approach does not present any degeneration
problem, it can be used in isotropic problems as well as in anisotropic ones.

5. Concluding remarks

In this work, we have developed a new approach to analyze the near-tip fields of through-the-thickness
cracks in thin plates subjected to bending. The Reissner plate theory is used in the present approach. By
establishing dual differential equations in the frame of the Hamiltonian system, a large range of problems in
this topic, some of them are somewhat difficult to treat with the traditional techniques, can be solved in
rather a simple way.

Appendix A

For a single isotropic plate with a semi-infinite crack, the asymptotic fields near the crack tip can be
written in closed form. The present approach permits to find out the solutions more easily comparing to the
traditionally used methods.

The governing differential equation (30) can be resolved by recurrence. First, we seek the solutions for
i =1 and 2 which need only to resolve the homogeneous differential equations. Then we increase succes-
sively i and some non-homogeneous differential equations are obtained. The non-homogeneous terms are
already known from lower order solutions. Thus we can find successively all eigenvalues and eigenvectors in
expansions (26).

A.1. Solutions for i =1 and 2

Consider the smallest eigenvalues (29). We can neglect the right-hand-side terms in (30), because, when
r— 0, £ —» —oo these terms tend to zero comparing those in the left hand side. We have therefore:

o, =Aip, i=12 (A1)
y,=Cy, i=1.2 (A2)
with
r 24(1 +v) 1
0 T 0
12(1 —v?)
a4 = | om0 0 i i=1,2
E 3
—% 2 0 0 1 — vy
L 0 0 —1—p 0 i
0 2(1+v)
Ehk
C = Ehk - (A.3)
(14 %4) 0
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The solutions of the homogeneous differential equation systems (A.1) and (A.2) are easy to found out. By
performing a standard eigenfunction analysis, we can easily obtain:

p=n/2 _
G102 (A.4)

Here the eigenvalues u < 0 and 2 = —1 are omitted according to Eq. (29).
The general solutions of (A.1) and (A.2) are:

L~ M

—=———cos(1 — ;)0
Dy;(1 + p;) ( )

1
—a,—D—” cos(l + u,)0 + ¢

aisin(l+ ;)0 + ¢ ul sin(1 — p;)0

a;cos(1 + p;)0 + c;cos(1 — p,)0

| v —
—b,-D—sm(l—i—yl.)G—i—di X H

H; Dyy(1+ ;)
—b-L cos(1 + ;)0 + gt H cos(l — ;)0
4 ID,U i i i

i Dpy(1+ ;) (A.5)

1 —
—b;cos(l + u;)0 — d; * cos(1l — ;)0
(I +m) T (1 —u)

bisin(1 + ;)0 + d; sin(1 — ;)0

i

sin(1 — u;)0

o { i zﬂyi les cos(1 + 4)0 + fisin(1 + 4)0] } (A6)

e;cos(l + 4;)0 — fisin(1 + 4;)0

with y = (3—v)/(1 +v), G=E/(2(1+v)) and D = (Eh*)/(12(1 +V)). a;, ..., f; are constant coeflicients
and satisfy the following relationships:

(1 +p)a = (1 —p)e; by=d if g =1/2,3/2...

AT
a; = —¢; (1+:ut)bl:_(1_:u)dl if :ui:O7172"' ( )
and
¢ ! /2:1/ (A.8)
fi=0 if 4, =-1,0,1---
The eigenvalues y; = 0 and 4; = —1 correspond to some rigid motions of the plate. With the eigenvalues
W =1/2 and 4, = —1/2, we obtain the singular near-tip field. Return to conventional notations, we have:
Kz |r 30 0 Kz |r . 30 .0
s =——4/=—| —cos—+ 2y — 1 | +==1/= ——(2g—-1 =
U =755 271[ c052+(,( )cosz}—FZD,/zn{Zasmz (2y )smz]
Kz [r] . 30 . 0 Kz |r 30 0
=~y [ sin T — (2 + D)sing | 4oy /om —— (27 +1)cos= A9
=55 2n[smz 2y + )smz}—kzD 27I[30052 2x+ )Cosz} (A.9)

W En \ 27 M2
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and

2 2| 42 2 2
M,(;:%[sin%g—i—sing} +4L\/§_7;[3cos379+cosg} (A.10)
0. = % smg
Op. = \/% cosg

The constants K; and K, are similar to the stress intensity factors in plane crack problems while Kj is
similar to the stress intensity factor Ky for anti-plane deformation cracks. These results are identical to
those obtained by Hartranft and Sih (1968), using the Reissner plate theory and the integral transformation
technique. Here we obtain them by using elementary mathematical tools.

A.2. Solutions for i > 2

Knowing the values of y;, 4, and the solutions for i =1 and 2, we can seek the higher orders solu-
tions for i > 2. By gathering the terms of the same order in (30), we obtain the following recurrence
equations:

0, — As0; = f| + E1y,
0, — Aspy = Exy, (A.11)
¢, —Aip;=Ei ¥, , +Disgpiy 25

and

VU — Gy = f, + Big,

‘/-Ii —C¥,=Bi 2, , i=4

(A.11) and (A.12) are non-homogeneous differential equation systems. Their solutions include two parts:
the general ones and the particular ones. The general solutions have been given in (A.5) and (A.6). The
particular solutions for i > 3 can be found out successively by considering the right hand terms in (A.11)
and (A.12) already known from lower order solutions. We list here only the particular solutions for i = 3
and 4.

(A.12)

(1) for i = 3:
oV (=1)={-% 0 0 0} AL3)
W =0)={-1g 0}" |
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(4) for i = 4:
4 .0
30+ 2
42+ 3v) 0
) 300 %2
oV (s = 3/2) = /o 3T 2
Ehk
201+ %2
0
1 [—4(7+V) cosﬁ—L1 =) cosg] 4=y sing
W = 1/2) = a P13(1+v) 2 1+v 2 b D(1+v) 2
4 ) —120 [ .30 .0 Y60 30 2 0
m{sm?+sm§] ﬁ{COSTmCOSE

(A.14)

It is to note that the results listed in this appendix are identical to those found in previous works, using
displacement eigenfunction method (Sosa and Eischen, 1986, Su and Leung, 2001) or using Stroh for-
malism (Yuan and Yang, 2000). One of the advantages of the present method is that the displacement and
internal force components are obtained simultaneously.
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